CAMx Modeling System Overview
TOPICS

• Atmospheric Dispersion Models

• CAMx v7 Overview
 • Features
 • Input/Output
 • Technical Formulation
 • Probing Tools
 • Computer Resources
Atmospheric Dispersion Models
DISPERSION MODELS
Overview

• All dispersion models solve some form of the “continuity equation”
 • A source-oriented “deterministic” or predictive method
 • Contrast to receptor-oriented “statistical” or diagnostic models
• Simulate how pollutant concentrations evolve in time/space from:
 • Emissions (sources)
 • Dispersion
 • Advection (transport by mean/resolved wind)
 • Turbulent diffusion (mixing by unresolved motion)
 • Chemical reactions (production/destruction)
 • Deposition (removal)
DISPERSION MODELS
Defined by Frame of Reference

- Lagrangian: coordinate system follows air parcels
 - Plume and puff models: presume Gaussian concentration patterns
 - Plume coherency limits applicability, some non-physical consequences
 - Simple, less expensive
- AERMOD, CALPUFF, SCIPUFF

\[C(x, y, z, t) = \frac{C}{2\pi H_0 \sigma_x \sigma_y} \exp\left(-\frac{y^2}{2\sigma_y^2}\right) \exp\left(-\frac{(z - H_0)^2}{2\sigma_z^2}\right) + \exp\left(-\frac{(z + H_0)^2}{2\sigma_z^2}\right) \]

- \(H_0 = \) Actual stack height
- \(H_e = \) Effective stack height
- \(\Delta h = \) pollutant release height
- \(\Delta h = H_0 + \Delta h \)
DISPERSION MODELS
Defined by Frame of Reference

- Eulerian: coordinate system is fixed in space
 - **Grid models**: no presumed concentration patterns, but pixelated results depend on grid resolution
 - Pollutants move consistently with resolved flow patterns
 - Complex, more expensive
 - CAMx, CMAQ, WRF-Chem

\[
\frac{\partial C}{\partial t} = -\nabla \cdot \vec{v} C + \nabla \cdot \vec{K} C
\]

\[
\frac{\partial c}{\partial t} = -\nabla \cdot \vec{V} c + \nabla \cdot K \nabla c + R_c + R_E + R_D
\]

\[
\frac{d[NO_2]}{dt} = k[NO_2] - J[O_3]
\]

From AWMA Environmental Manager magazine, July 2012 issue on AQMEII:
Douw Steyn, Peter Builjes, Martijn Schaap, Greg Yarwood
DISPERSION MODELS
Eulerian Models – Advantages

• More realistic, comprehensive, explicit treatment of many processes:
 • Numerous emission types/sources
 • Complex meteorology
 • Complex non-linear chemistry
 • Multi-pathway pollutant removal

• Wide range of scales and applicability
 • Urban to global
DISPERSION MODELS
Eulerian Models – Limitations

- Data intensive
 - Meteorology, emissions, initial/boundary conditions
 - Output can be complicated, non-intuitive to interpret
- Grid resolution
 - Affects accuracy, speed, data volume
 - Parameterized sub-grid processes
- Sophisticated numerical treatments
 - Operator splitting
 - Complex solvers affect model speed

- Applications require
 - Ample computing resources
 - Ample time investment
 - Ample knowledge/understanding

- Remedies
 - Parallelization over multiple CPUs
 - “Smart” solver technologies
 - Grid nesting/Plume-in-Grid
 - Probing Tools
CAMx Features

- Ozone
- Particulates
- Toxics
CAMx v7 FEATURES

- Regional tropospheric photochemical grid model
 - Multiple gas-phase chemical mechanisms
 - Comprehensive aerosol treatment
 - Mercury and toxics
- Large range of applicable scales:
 - Nested grids extend scales from ~1 to 1000’s km
 - Individual point sources plumes (<< 1 km) via Plume-in-Grid
- Flexible “off-line” model
 - Meteorological and emission inputs derived from other models
CAMx v7 FEATURES

• Contemporary peer-reviewed algorithms
• Computationally and memory efficient
 • Parallelization: shared (OMP) and distributed (MPI) memory
 • Either or both can be used
• Flexible, but for experienced Linux users
• Well-vetted history
 • US EPA, States/municipalities, stakeholders, global user base
 • Extensive scientific publications on CAMx applications
• Freely available to the public (www.camx.com)
CAMx v7 FEATURES

• 2-way or 1-way grid nesting
 • “Flexi-nesting”: introduce/remove nested grids anywhere, any time

• Multiple map projections
 • Lambert, Polar, Mercator, UTM, Geodetic (latitude/longitude)

• Two advection options (PPM, Bott)

• Two dry deposition options (Wesely, Zhang)

• Plume-in-Grid (PiG) sub-model
 • Two chemistry options (reduced NOx-O_3 + PM mechanism, full gas-phase mechanism)

• Surface chemistry/re-emission model
 • User-defined heterogeneous chemistry on soil, vegetation, snow
CAMx v7 FEATURES
Probing Tools

- Source Apportionment Technology (SAT)
 - Track attribution of ozone and PM to emissions by category and region
- Decoupled Direct Method (DDM, HDDM)
 - Track chemical sensitivity to emissions and other parameters by category and region
- Process Analysis tools (IPR, IRR, CPA)
 - Additional process-specific information helps explain model predictions
- Reactive Tracer sub-model (RTRAC, RTCMC)
 - Run additional gas and PM species (toxics) with separate chemistry
CAMx

Ozone
Particulates
Toxics

Input/Output
CAMx v7 MODELING SYSTEM
CAMx v7 INPUT/OUTPUT Formats

• NetCDF formats for gridded model input and output files
 • NetCDF3 is traditional, uncompressible
 • NetCDF4 uses HDF5 data compression (conserves disk space)
 • Models/programs using NCF4 automatically read/write compressed files
 • No need to un-compress separately!

• Uncompressed CAMx netCDF I/O is compatible with EPA’s Models-3 I/O-API convention
• CAMx allows mix of traditional Fortran binary and netCDF input files
• User can select traditional Fortran binary or netCDF output files
CAMx v7 INPUT/OUTPUT
Meteorology and Environmental Inputs

• Define state of the atmosphere and surface
 • 2D land cover, LAI, topography, snow cover
 • 3D wind, temperature, pressure, humidity, clouds, rain, turbulent diffusion rates
 • 3D vertical grid structure

• Pre-processor tool available to interface with the WRF meteorological model
CAMx v7 INPUT/OUTPUT

Emission Inputs

- Gridded surface emissions
 - Mobile, area, biogenic, etc.
 - Multiple input files by sector
- Gridded 3-D emissions
 - Aircraft, wildfire, lightning, etc.
 - Multiple input files by sector
- Elevated point emissions
 - Large industrial stacks or sources with plume rise
 - Model-calculated or user-specified plume rise by source
 - Multiple inputs file by sector
CAMx v7 INPUT/OUTPUT

Other Inputs

- Initial conditions define initial state of the atmosphere at the start of a simulation
- Boundary conditions define pollutant fluxes into the domain from the lateral and top boundaries
 - Pre-processors available for global model downscaling
 - GEOS-Chem, MOZART/WACCM/CAM-Chem
 - Hemispheric CAMx (H-CAMx)
- Clear-sky photolysis rates and total atmospheric ozone column
- Chemistry parameters file defines species and reaction mechanisms
CAMx
Ozone
Particulates
Toxics

Technical Formulation
• “Master” and “nested” grids
 • All nests defined relative to master
 • Arbitrary mesh factors allowed (2, 3, 5, etc.)
 • **BUT** telescoping grids must have lowest common denominator
 • Nests need internal “buffer” cells to hold boundary conditions
TECHNICAL FORMULATION
Computational Grids

• Terrain-following vertical height coordinate
 • Usually based on met model structure (WRF)
 • Time-varying structure allowed
 • No vertical nesting

• Grid cell arrangement
 • Variables are “staggered”
 • Most are carried at cell center and represent cell averages
 • Transport fluxes are carried at cell edges
• Horizontal advection solver options:
 • Bott (1989): area-preserving flux-form solver
 • Colella and Woodward (1984): piecewise-parabolic method

• Vertical advection solved with centered hybrid implicit scheme (Emery et al., 2011)
 • Accounts for time-varying layer structure
 • Maintains mass conservation/consistency
 • Reduces numerical diffusion
TECHNICAL FORMULATION
Transport

- Horizontal diffusion solved with explicit scheme
 - 2-D simultaneous (Smagorinsky, 1963)
- Vertical diffusion (2 options):
 - Standard K-theory solved with implicit scheme
 - ACM2 (Pleim, 2007) non-local convection solved semi-implicitly
 - Dry deposition flux used as surface boundary condition
TECHNICAL FORMULATION
Gas-Phase Photochemistry

- Ozone, NOx, VOC, CO, halogens, CH₄, inorganic and organic radicals and products

- Gas-phase mechanisms currently supported:
 - CB05 (Yarwood et al., 2005)
 - CB6r2h (Yarwood et al., 2014)
 - CB6r4 (Emery et al., 2015, 2016, 2019)
 - SAPRC07TC (Carter, 2010, Hutzell et al., 2012)

- TUV pre-processor generates lookup table of clear-sky photolysis rates
 - Dimensions include zenith angle, altitude, ozone column, surface albedo
 - Cloud/aerosol adjustments applied within CAMx
TECHNICAL FORMULATION
Aerosol Chemistry

• Primary elemental/organic carbon, dust, sea salt, elemental metals and cations

• Secondary sulfate, nitrate, ammonium, chloride, organic aerosols

• Chemical treatments:
 • Aqueous sulfate, nitrate, SOA chemistry (Chang et al., 1987; Ibusuki and Takeuchi, 1987; Martin and Good, 1991; Jacobson, 1997; Ortiz-Montalvo et al., 2012; Lim et al., 2013)
 • Chemistry and partitioning among organic gases and aerosols: SOAP (Strader et al., 1999) or the Volatility Basis Set (Koo et al., 2014)
 • Partitioning among inorganic acids, cations and aerosols: ISORROPIA (Nenes et al., 1998, 1999) or EQSAM (Metzger et al., 2016)
 • Modal (CF) and sectional (CMU) size treatments
TECHNICAL FORMULATION

Pollutant Removal

- Dry deposition
 - Deposition velocity depends on surface type and seasonal characteristics
 - Resistance model analogous to an electric circuit
 - Wesely (1989), Slinn and Slinn (1980)
 - Dependencies include: season, land cover, solar flux, surface stability, surface wetness, gas solubility and diffusivity, aerosol size
 - Resistances include dependence on Leaf Area Index (LAI) and snow cover
 - Default LAI set according to landuse; can be adjusted according to satellite-derived LAI
TECHNICAL FORMULATION
Bidirectional Ammonia Deposition/Emission

- “BiDi” algorithm of Zhang et al. (2010)
 - Implemented within CAMx Zhang dry deposition function
- Assigns NH₃ “emission potentials” by land cover type (Whaley et al., 2018)
 - Define temperature-dependent compensation points along circuit
 - Determine direction and magnitude of the net NH₃ flux
TECHNICAL FORMULATION
Pollutant Removal

• Wet scavenging
 • First order removal rate based on scavenging coefficient (Seinfeld and Pandis, 1998)
 • Gas rates depend upon solubility and diffusivity
 • Aerosol rates depend upon size and density
 • Separate rates determined for in-cloud and below-cloud processes, rain vs snow
DISPERSION MODELS
Plume-in-Grid (PiG)

- Incorporates Lagrangian puff treatment into grid model framework
- Explicitly addresses point source plume-scale dispersion and chemistry
 - Overcomes grid scale limitations
- Provides practical advantages of Lagrangian methods
 - Removes shape limitations at large scales by transferring plume mass to grid when adequately resolved downwind
 - Allows cost effective application from plume to regional scales
TECHNICAL FORMULATION
Plume-in-Grid (PiG)

• GREASD PiG (fast chemistry):
 • Early inorganic NOx-O$_3$ chemistry from large NOx sources
 • Works with PM and SAT
 • Does not work with other Probing Tools

• IRON PiG (slow chemistry):
 • Full gas-phase photochemistry
 • Incremental chemistry relative to grid concentrations
 • No PM
 • Works with RTRAC
 • Does not work with other Probing Tools
TECHNICAL FORMULATION
Surface Model

- Deposition/Chemistry/Re-emission
 - Uses deposited mass from dry deposition module
 - User-selected species and heterogeneous chemical reactions/rates
 - Re-emits volatile products back to atmosphere
CAMx

Probing Tools

Ozone
Particulates
Toxics
PROBING TOOLS

Source Apportionment Technology (SAT)

- Apportions simulated ozone and PM to emissions and initial/boundary conditions
 - Emissions can be split by source region and/or source category
 - Apportionment provided throughout the modeling domain
- Tracks precursor emissions (NOx, SO₂, NH₃, VOC, primary PM)
- Tracks secondary products (O₃, SO₄, NO₃, NH₄, SOA)
 - Can choose which species groups to track: ozone, sulfur, nitrogen, organics, primary PM, Hg
- Associates ozone/PM production with precursors present when formed – SAT is tied into the model’s chemical mechanism
- Distinguishes ozone production under NOx and VOC sensitive conditions – accounts for non-linear photochemistry
PROBING TOOLS
Source Apportionment (SA)

- Source Apportionment is **NOT** Sensitivity
 - SA *can* identify what precursors participated in ozone/PM production in a specific chemical environment or scenario (culpability)
 - SA is *limited* for predicting responses to precursors controls when chemical responses are non-linear

- Alternate ozone apportionment methodologies:
 - OSAT: standard approach
 - APCA: attributes ozone production preferentially to anthropogenic (controllable) sources, such as when urban NOx and biogenic VOC combine to form ozone
PROBING TOOLS
Decoupled Direct Method (DDM)

- Calculate 1st-order (DDM) and 2nd-order (HDDM) derivatives, or sensitivities
 - Sensitivity of a concentration output to an emissions or IC/BC input
 - PM: DDM only
 - Ozone: DDM or HDDM
 - Calculate many sensitivities at once
 - Emissions may be specified by region and/or category

- Applications
 - Estimate effects of emission changes in a single model run
 - Rank relative importance of source region/categories to ozone reduction potential, or other species
PROBING TOOLS
Decoupled Direct Method (DDM)

• Sensitivity is **NOT** Source Apportionment
 • It *can* predict ozone response to precursor controls:
 • DDM: small-moderate (near-linear) changes
 • HDDM: larger (non-linear) changes
 • It is **limited** for source attribution (culpability) because sensitivities can be negative

• DDM is slower than SA, but:
 • Provides information for every species (not just ozone or PM components)
 • More flexibility in selecting which parameters to track
PROBING TOOLS

Process Analysis (PA)

- Gather and report additional information on model processes
 - Chemistry, deposition, emissions, etc.
 - Over entire modeling grid or user-defined analysis domains
- Explain “how the model got the answer it got”
 - Requires post-processing to be useful
- Integrated Process Rate (IPR) – mass budgets by each physical and chemical process
- Integrated Reaction Rate (IRR) – detailed chemical rates reported by the mechanism
- Chemical Process Analysis (CPA) – key chemical rates most important for diagnosing and evaluating chemical processing
PROBING TOOLS
Process Analysis (PA) – Example from CPA

Ozone production rate
Ozone from VOC-sensitive chemistry
Ozone from NOx-sensitive chemistry
PROBING TOOLS

Reactive Tracers (RTRAC)

- Add sets of independent reactive gas and/or inert particle tracers (e.g., air toxics)
 - Assumes reactive species have minimal impact on photochemistry
 - Each tracer can be “tagged” for source apportionment
- Tracers operate in parallel to the CAMx host model
 - Tracer decay/production driven by modeled oxidant levels and photolysis rates
 - “Recursive tracers” allow for several generations of products: secondary toxics
- Can use IRON PiG and sampling grid for “fenceline” dispersion calculations
PROBING TOOLS
Reactive Tracers (RTCMMC)

- RTCMC allows RTRAC to treat more complex chemistry
 - Reads external mechanism from text file
 - Automatically builds mechanism for LSODE solver at model startup
 - Performs independent chemical integration
 - Complex non-linear interactions among tracers and CAMx “core” species
- Adds mechanism flexibility
- Removes need to code separate mechanisms by hand
- Tracer apportionment possible, depends on chemical complexity

Example Butadiene Mechanism
Computer Resources
COMPUTER RESOURCES
Hardware and Software

• Modern Intel or AMD multi-core chipsets
 • Single servers or cluster environments
 • Fast networking among servers/nodes
 • High volume RAID for data I/O, hard drives for backup (TBs)
• Linux OS – any distribution/version (MS Windows not supported)
• Fortran90 for Linux, supporting OMP:
 • Commercial: Intel, Absoft/OSX
 • Free: Portland Group, Sun/Oracle, Gnu Fortran
• 3rd party libraries
 • MPI: MPICH, OpenMPI, MVAPICH
 • NetCDF: v3 or v4/HDF5
COMPUTER RESOURCES
Speed, Memory, Parallelization Scalability

- Depends on:
 - Number, sizes and resolution of grids
 - Chemistry mechanism/solver
 - Use of PiG and Probing Tools
 - Parallelization:
 - Larger/complex CAMx applications scale better because un-parallelized overhead processes (e.g., model setup, I/O, etc.) are small fractions of run time
 - Fast network (InfiniBand) and I/O (solid state drives) become important with many compute cores spread over many nodes such as in a cluster environment
 - We recommend using OMP and MPI in combination
 - Conduct tests to determine which OMP/MPI combinations work best for your application
24-hour simulation

CAMx v6.4 with 3 nested grids:
- 36-km (148x112), 12-km (149x110), 4-km (191x218), 28 layers
- CB6r4, no PM, no PiG, no Probing Tools
- Portland PGF90 v13.4, Intel IFORT v15.0 with OMP and MPICH v3.1.4
- 2.60 Ghz Intel Xeon chipset, 48 hyper-threaded cores

<table>
<thead>
<tr>
<th>MPIxOMP</th>
<th>Total Time</th>
<th>Factor</th>
<th>Scaling</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x1</td>
<td>7:16:41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1x3</td>
<td>2:53:32</td>
<td>2.5</td>
<td>84%</td>
</tr>
<tr>
<td>1x6</td>
<td>1:36:30</td>
<td>4.5</td>
<td>75%</td>
</tr>
<tr>
<td>1x12</td>
<td>0:59:43</td>
<td>7.3</td>
<td>61%</td>
</tr>
<tr>
<td>1x24</td>
<td>0:44:31</td>
<td>9.8</td>
<td>41%</td>
</tr>
<tr>
<td>3x1</td>
<td>2:44:33</td>
<td>2.7</td>
<td>88%</td>
</tr>
<tr>
<td>6x1</td>
<td>1:32:55</td>
<td>4.7</td>
<td>78%</td>
</tr>
<tr>
<td>12x1</td>
<td>0:52:18</td>
<td>8.3</td>
<td>70%</td>
</tr>
<tr>
<td>24x1</td>
<td>0:42:57</td>
<td>10.2</td>
<td>42%</td>
</tr>
<tr>
<td>47x1</td>
<td>0:35:17</td>
<td>12.4</td>
<td>26%</td>
</tr>
<tr>
<td>3x8</td>
<td>0:42:32</td>
<td>10.3</td>
<td>43%</td>
</tr>
<tr>
<td>4x6</td>
<td>0:35:30</td>
<td>12.3</td>
<td>51%</td>
</tr>
<tr>
<td>6x4</td>
<td>0:45:54</td>
<td>9.5</td>
<td>40%</td>
</tr>
<tr>
<td>8x3</td>
<td>0:47:09</td>
<td>9.3</td>
<td>39%</td>
</tr>
<tr>
<td>12x2</td>
<td>0:36:29</td>
<td>12.0</td>
<td>50%</td>
</tr>
</tbody>
</table>
COMPUTER RESOURCES
Run Time Scaling, Example 2

- 24-hour simulation
- CAMx v6.4, US EPA national modeling grid:
 - 12-km (225x225), 25 layers
- CB6r2 + CF aerosols, PiG for major point sources
- SAT (9 regions x 1 sector, Ozone, Sulfur, Nitrogen groups, 220 total tracers)
- EPA’s HPC system (Atmos); combinations of OMP and MPI, and combinations of standard disk and solid state (RAM) I/O
CAMx WEBSITE
http://www.camx.com

A multi-scale photochemical modeling system for gas and particulate air pollution
Version 7.00 posted May 31, 2020

Why CAMx
- Simulate air quality over many geographic scales
- Treat a variety of inert and chemically active pollutants – photochemical gases, particulates, mercury and toxics
- Conduct source attribution, sensitivity, and process analyses
- Apply distributed- and shared-memory parallelization

CAMx In Action...
Overview presentation of features and formulation
Visit our on-line library of papers and reports